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Abstract. The Azores is an active volcanic region that offers exceptional conditions for nature-based tourism, one of the 

main axes of economic growth in this region. A future volcanic eruption in the archipelago may have long-term 

consequences to this economic sector. Therefore, it is fundamental to assess its vulnerability to volcanic hazards in order to 

try to mitigate the associated risk. This study proposes a new approach to assess the economic impact of explosive eruptions 

on the tourism sector. We considered two eruptive scenarios for Fogo volcano (São Miguel Island), the most probable (VEI 15 

4 sub-Plinian eruption) and the worst-case (VEI 5 Plinian eruption), both producing tephra fallout and PDCs. The results of 

numerical simulations were overlaid with tourism-related buildings and infrastructure of Vila Franca do Campo municipality 

to identify the elements at risk. The Loss Present Value method was used to estimate the benefits generated by the 

accommodation units over 30 years for different economic scenarios. The assessment of the economic impact using 2018 

indicators reveals that in a near total destruction scenario the economic loss is approximately 145 million euros. Such 20 

approach can also be adopted to other volcanic regions, other geologic hazards and other economic sectors. 

 

Keywords: eruptive scenarios; economic impact; ocean island volcano, tephra fallout, pyroclastic density currents 

 

1 Introduction 25 

Among all natural phenomena on Earth, explosive volcanic eruptions are one of the most destructive and can cause major 

socio-economic impacts. Explosive eruptions can affect large areas of land, ocean, and airspace, threatening people, animals, 

buildings, infrastructure, transportation, communications, agriculture land, and water resources (e.g. Guffanti et al., 2005; 

Spence et al., 2005; Wilson et al., 2012; Scaini et al., 2014; Wilson et al., 2014; Craig et al., 2016; Brown et al., 2017; 

Kueppers et al., 2019). In more extreme cases, explosive eruptions may also affect global climate (e.g. Rampino and Self, 30 

1982; Hansen et al., 1992).  
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Despite the numerous hazards related to explosive volcanism, in several places volcanoes are regarded as attractions and not 

as a potential sources of problems. For some communities, nature-based tourism plays a significant role in the development 

of the local economy. However, the potential of some volcanoes to produce hazardous explosive eruptions is often 

overlooked or underestimated. 35 

The 1995 eruption of Soufrière Hills volcano, on Montserrat Island (Lesser Antilles), is a dramatic example of the major 

impact that a volcanic eruption can have on a local community. This long-lasting eruption led to the island’s largest 

migratory outbreak, with approximately 70 % of the population leaving Montserrat (Kokelaar, 2002; Annen and Wagner, 

2003; Hicks and Few, 2015). Before 1995, Montserrat had a prosperous tourism industry, with revenues accounting for 

approximately 25 % of the island's gross domestic product (GDP) (Caribbean Community Secretariat, 2009 in Pacheco and 40 

Lewis-Cameron, 2010). The eruption had a significant impact in this sector, with a decrease of roughly 50 % in arrivals 

between 1995 and 1996, reaching an all-time low in the following year, with a decrease of 44 % relative to 1996. The 

stabilization of the volcanic activity in 1998 led to a 50 % increase in arrivals compared to 1997. Although the eruption 

caused the destruction of critical infrastructure, including airport and harbour, and the capacity to accommodate tourists, this 

sector has recovered steadily, as shown by the increase of tourist arrivals in 1997 and 1999, from 5000 visitors to 45 

approximately 10 000, respectively (Pacheco and Lewis-Cameron, 2010). Despite the last significant activity has occurred in 

2010, officially it is still considered an on-going eruption (Wadge et al., 2014; Hicks and Few, 2015), yet tourism continues 

to grow with Soufrière Hills volcano representing one of the island's ex-libris (Pacheco and Lewis-Cameron, 2010). 

Taking another perspective, the 2010 eruption of Eyjafjallajökull volcano (Iceland) drew the attention to the vulnerability of 

modern society to the atmospheric dispersal of ash plumes. The peculiar characteristics of this eruption combined with 50 

specific meteorological conditions resulted in the dispersal of volcanic ash over large areas of the North Atlantic Ocean and 

Europe (e.g. Gasteiger et al., 2011; Gudmundsson et al., 2012). Despite the moderate size and duration of the eruption, it 

caused unprecedented disruption to civil aviation over European airspace, with more than 8.5 million passengers stranded 

(Alexander, 2013). The aviation sector is extremely important to global economy, since it represents 0.7 % of the world's 

GDP and 35 % of world trade (Pálsson, 2010). The overall GDP loss resulting from the long-term incapacity to move people 55 

and assets was estimated at approximately US $ 4.7 billion, including airline industry losses and loss at destination, as well 

as general productivity losses (Oxford Economics, 2010; Pallister and McNutt, 2015). Although locally this eruption had a 

reduced impact, statistical data estimate that between April and May 2010 the number of tourists decreased by approximately 

17.5 % in Iceland (Jónsdóttir, 2011). 

Oceanic islands are particularly vulnerable to volcanic eruptions and other geological hazards due to their typical remote 60 

location, small size, and rough topography, which combined with high population densities and weak economies make risk 

management and evacuation very challenging (e.g. Pelling and Uitto, 2001; Clare et al., 2018; Kueppers et al., 2019). The 

Azores islands (North Atlantic Ocean) have an extensive geological record of explosive volcanic eruptions that typically 

occur at trachytic central volcanoes (Pimentel et al., 2015). Although the frequency of large explosive eruptions is relatively 

low, the impact of a future explosive eruption could be devastating, with long-term consequences to the regional economy. 65 
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As the Azorean tourism suffered a significant boost since 2015 with the alteration of the accessibility and mobility model, 

the importance of this sector in the regional economy has grown over the years. Therefore, it is fundamental to assess its 

vulnerability to volcanic hazards in order to implement appropriate mitigation strategies. 

São Miguel Island is the largest (744 km2) and the most populated (> 137 000 inhabitants) of the Azores archipelago, where 

most of the tourism industry is concentrated. The volcanic history of São Miguel shows that it is the most active island in the 70 

Azores, with the highest eruptive frequency of explosive events. At least 34 explosive eruptions (sub-Plinian and Plinian) are 

known to have occurred in the last 5000 years. Fogo volcano, located in the central part of São Miguel, was the only volcano 

that produced a Plinian eruption in this time frame, although it has the lowest eruptive frequency of the three active central 

volcanoes of the island (Gaspar et al., 2015a). Nonetheless, its potential to produce hazardous explosive eruptions must not 

be underestimated and the economic impact of future eruptions should be properly assessed. 75 

In this framework, we aim to evaluate the impact of future explosive eruptions of Fogo volcano on the tourism of São 

Miguel, taking Vila Franca do Campo municipality as study area. To assess which areas and exposed elements are 

susceptible to be affected by tephra fallout and pyroclastic density currents (PDCs), two eruptive scenarios were considered: 

the most probable scenario, corresponding to a sub-Plinian eruption; and the worst-case scenario, corresponding to a Plinian 

eruption. The assessment was carried out on buildings related to tourism and allowed to estimate which exposed elements 80 

could be affected, with physical damage and loss of functionality. The methodology proposed consists in evaluating the 

benefits generated by the tourism industry, restricted to the quantification of revenues generated by accommodation units, to 

determine the current loss of that revenue over 30 years. Such analysis is especially important as tourism is a growing and 

promising activity in the Azores in general (Vieira et al., 2019), in São Miguel Island (Vieira and Antunes, 2017) and 

certainly in Vila Franca do Campo, which due to the existence of bathing areas, a moderate climate, and maritime and 85 

recreational infrastructures attracts many visitors. This study represents the first attempt to quantify the economic loss related 

to future explosive eruptions of Fogo volcano on the island of São Miguel. However, the present approach may be adopted to 

other active volcanic regions and economic activities. 

 

2 Geographical and geological setting 90 

The Azores archipelago is located in the North Atlantic Ocean and comprises nine volcanic islands. From a geodynamic 

point of view, this region corresponds to the triple junction where the North American, Eurasian and Nubian lithospheric 

plates meet (Fig. 1a,b). Due to this particular geodynamic framework, the archipelago is subjected to frequent seismic and 

volcanic activity (e.g. Gaspar et al., 2015b). 

São Miguel Island is formed by three active central volcanoes, Sete Cidades, Fogo and Furnas, linked by Picos and Congro 95 

fissure volcanic systems. The eastern part of the island comprises the older and inactive Povoação volcano and Nordeste 

volcanic system (Fig. 1c). All three active central volcanoes are truncated by summit calderas related to paroxysmal 
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explosive eruptions. In the last 5000 years at least 33 sub-Plinian eruptions and one Plinian eruption are known to have 

occurred in São Miguel (Pacheco et al., 2013; Gaspar et al., 2015a). 

Located in the central part of São Miguel, Fogo volcano (also known as Água de Pau volcano) is the largest of the three 100 

active central volcanoes of the island, reaching a maximum altitude of 947 m above sea level. The 3.2 km-wide summit 

caldera was formed by several collapse events and is presently occupied by a lake. Several volcanic structures are present 

inside the caldera (lava domes, pumice and tuff cones), as well as on the northern and southern flanks of the volcano (lava 

domes, scoria and pumice cones) (Wallenstein, 1999; Wallenstein et al., 2015). 

The stratigraphy of Fogo volcano is divided into two major lithostratigraphic units (Wallenstein, 1999; Wallenstein et al., 105 

2015): the Lower Group, which comprises all volcanic products older than 40 ka; and the Upper Group, which includes all 

products emitted over the last 40 ka, including from the historical eruptions. The recent eruptive period was marked by at 

least two paroxysmal explosive eruptions of Plinian dimensions: the Ribeira Chã eruption (8000–12 000 years ago) and the 

Fogo A eruption (~4600 years ago). In particular, the last 5000 years were characterized by five sub-Plinian eruptions: Pisão, 

Fogo B, C, D, and 1563 (historic). 110 

Fogo A was one of the largest eruptions recorded on São Miguel. Its deposit was studied by several authors (e.g. Walker and 

Croasdale, 1971; Booth et al., 1978; Bursik et al., 1992; Wallenstein, 1999; Pensa et al., 2015a,b) and encompasses a 

complex and widespread succession of trachytic pyroclastic products emitted ~4600 years ago during a Plinian eruption from 

the summit caldera. The eruption started with a short-lived phase of hydromagmatic activity, producing widespread fine ash. 

This was followed by a steady Plinian eruptive column that produced a major pumice fall deposit. The radial and almost 115 

symmetrical distribution of the fall deposit around the caldera indicates weak wind blowing from the W during the eruption. 

Then the eruptive column experienced partial collapses that generated PDCs, leading to the emplacement of small-volume 

ignimbrites inter-bedded with pumice fall deposits. The final phase of the eruption was marked by the total collapse of the 

eruptive column and consequent emplacement of a voluminous ignimbrite that covered the flanks of the volcano, reaching > 

20 m thick in the main valleys and especially in Ribeira Grande graben (Wallenstein, 1999; Pensa et al., 2015a,b; 120 

Wallenstein et al., 2015). 

The last sub-Plinian eruption of Fogo volcano occurred in CE 1563. The deposit was studied by several authors (e.g. Walker 

and Croasdale, 1971; Booth et al., 1978; Wallenstein, 1999; Aguiar, 2018) and corresponds to a stratified succession of 

trachytic pumice and ash fall layers. This eruption started on June 28th in the centre of the caldera, on the previously existing 

cone of Pico da Lagoinha, also known as Pico das Berlengas (Frutuoso [1522-1591†], 1981; Walker and Croasdale, 1971; 125 

Wallenstein, 1999). The first phase of the eruption was hydromagmatic, producing a fine ash layer. This was followed by the 

development of an unsteady sub-Plinian eruptive column with frequent hydromagmatic pulses. It produced a stratified 

sequence dominated by ash layers at the base and pumice lapilli layers towards the top. Tephra was mostly dispersed to the 

eastern part of the island due to predominant WSW-blowing wind. On June 29th, the wind changed direction to the NE 

quadrant, causing 10 cm of ash fall in Ponta Delgada. The eruptive activity lasted five days and ceased on July 3rd. It should 130 

be mentioned that a basaltic flank eruption occurred on the top of Pico Queimado dome (then called Pico do Sapateiro), on 
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the north flank of Fogo volcano, four days after the onset of the sub-Plinian eruption. A subsequent phreatic explosion was 

also reported from inside the caldera in February 1564 (Frutuoso [1522-1591†], 1981; Wallenstein et al., 2015; Aguiar, 

2018). 

The present study area, Vila Franca do Campo municipality, is located on the southern flank of Fogo volcano and it borders 135 

with Lagoa municipality to the west, Ribeira Grande to the north and Povoação to the east. To the south it is bounded by the 

ocean in a costal extension of 15.5 km. Vila Franca do Campo has an area of 77.9 km2 and is divided in six parishes: Água 

d’Alto, São Pedro, São Miguel, Ribeira Seca, Ribeira das Tainhas and Ponta Garça (Fig. 2). 

 

3 Methodology 140 

3.1 Definition of the eruptive scenarios 

The first step in the assessment of the impact of future explosive eruptions of Fogo volcano on São Miguel Island was to 

define the eruptive scenarios. Based on the recent geological record of Fogo volcano (last 5000 years) and the frequency and 

magnitude of past trachytic explosive eruptions, two scenarios were defined: the most probable scenario (i.e. the most likely 

eruption) and the worst-case scenario (i.e. the largest magnitude eruption), in agreement with previous studies (e.g. Gaspar et 145 

al., 2015a). The most probable scenario is a sub-Plinian eruption with Volcanic Explosivity Index (VEI, Newhall and Self, 

1982) of 4, similar to the Fogo 1563 eruption. Such an eruption would produce widespread tephra fallout and could also 

generate PDCs in proximal areas, although this was not the case of the 1563 eruption. The worst-case scenario is a Plinian 

eruption with VEI 5, similar to the Fogo A eruption. Such an eruption would produce thick widespread tephra fallout and 

generate voluminous PDCs along the flanks of the volcano. 150 

Taking into account that in the Azores region there are significant differences in the wind patterns of summer (May to 

September) and winter periods (October to April) (see wind statistical analysis in Pimentel et al., 2006; Cole et al., 2008; 

Gaspar et al., 2015a) different tephra fallout scenarios should also be considered for the two periods. 

3.2 Numerical simulations 

To identify which areas of São Miguel are susceptible to be affected by trachytic explosive eruptions of Fogo volcano, the 155 

dispersion of tephra fallout and PDCs was simulated using VORIS (Volcanic Risk Information System) version 2.0.1 

(Felpeto et al., 2007) implemented in a geographic information system (GIS) (ArcGIS 9.1 ESRI®). VORIS 2.0.1 is a tool 

used in the assessment of volcanic hazards that provides users with the necessary instruments for the production of scenarios 

and hazard maps. 

https://doi.org/10.5194/nhess-2020-239
Preprint. Discussion started: 4 August 2020
c© Author(s) 2020. CC BY 4.0 License.



6 
 

3.2.1 Tephra fallout 160 

Numerical simulations of tephra fallout were computed using an advection-diffusion model that assumes that above the vent 

the mass is distributed along a vertical line following the Suzuki approach (Suzuki, 1983). Far from the vent, the transport of 

particles is controlled by the advective effect of the wind, the diffusion due to atmosphere turbulence and the terminal 

settling velocity of the particles (see details in Folch and Felpeto, 2005; Felpeto et al., 2007). 

The eruptive source parameters used in the simulations were obtained from the literature related to Fogo A and Fogo 1563 165 

eruptions, and when unavailable, from published data of similar explosive eruptions. For the most probable scenario (a VEI 

4 sub-Plinian eruption), we considered a total tephra volume of 1 km3 (Booth et al., 1978) and a column height of 18 500 m 

(Carey and Sparks, 1986). For the worst-case scenario (a VEI 5 Plinian eruption), we used a total tephra volume of 3.2 km3 

(Booth et al., 1978) and a column height of 27 000 m (Bursik et al., 1992). The simulations were conducted assuming a vent 

located in the centre of Fogo caldera. Eruptive input parameters are shown in Table 1. 170 

Wind parameters were compiled from the Integrated Global Radiosonde Archive dataset of the National Climatic Data 

Centre for the Lajes/Santa Rita station, in the neighbouring island of Terceira, between 1947 and 2003. Statistical analysis of 

56 years of radiosonde data performed by Pimentel et al. (2006) revealed significant differences between summer (May to 

September) and winter periods (October to April). In the troposphere (and lower levels of the stratosphere, i.e. up to 17 000 

m altitude), the most frequent directions in the summer period are west to northwest and north to northwest blowing winds, 175 

whereas in winter period the dominant trend is west to southwest blowing winds. At higher altitudes (above 17 000 m), a 

strong eastern direction prevails during the summer period, while in the winter period a western direction dominates 

(Pimentel et al., 2006; Gaspar et al., 2015a). The most probable combinations of wind direction and intensity were chosen 

for different vertical heights, according to the simulated column height. Wind input parameters are summarized in Table 1. 

In total four tephra fallout scenarios were simulated: 1) VEI 4 sub-Plinian eruption during the summer period; 2) VEI 4 sub-180 

Plinian eruption during the winter period; 3) VEI 5 Plinian eruption during the summer period; and 4) VEI 5 Plinian eruption 

during the winter period. 

3.2.2 Pyroclastic Density Currents 

Simulations of PDCs were performed with the energy cone model (Malin and Sheridan, 1982), which provides a fast and 

conservative approach to assess the maximum potential extent of these volcanic products (e.g. Alberico et al., 2002, 2008). 185 

The energy cone model relates the height of the column collapse (H) and the maximum run-out distance of the PDCs (L), 

through the Heim coefficient, which translates the rheological properties of the currents. The energy cone inclination is given 

by the angle (θ) defined by the arctangent of H/L (Felpeto et al., 2007; Toyos et al., 2007). This method compares the 

elevation of the energy cone, such the potential energy of a given PDC, with the topographic elevation. If the energy cone is 

higher than the surrounding topography, the area may be inundated by the current. Otherwise, the PDC may encounter a 190 

topographic obstacle that blocks its propagation (Alberico et al., 2008). 
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The maximum potential extent of a PDC is directly related to the VEI of the eruption and the topography around the vent. A 

higher VEI implies that the PDC can reach larger distances (Alberico et al., 2008). Input parameters used in the simulations 

were collapse equivalent heights of 300 and 500 m (for VEI 4 sub-Plinian and VEI 5 Plinian scenarios, respectively) and a 

constant collapse equivalent angle of 6°, in agreement with previous studies (e.g. Alberico et al., 2002, 2008, 2011; Cole et 195 

al., 2008). Both simulations were preformed assuming a source area equal to the floor of the caldera, where each 50 m cell 

had an equal probability of generating PDCs. 

3.3 Exposed elements 

The vulnerability of buildings and infrastructure to different volcanic products depends on the type of construction materials, 

the quality of the workmanship, the age and maintenance level, their shape and orientation (Pomonis et al., 1999), but also 200 

on the loss of benefits from the activity for which they are intended to. Thus, in the particular case of explosive eruptions, we 

considered the vulnerability of buildings to tephra fallout and PDCs. In this study, we do not intend to assess the damage to 

the buildings but instead the loss of functionality. 

To identify the exposed elements, a detailed inventory of all buildings and infrastructure related to the tourism sector in Vila 

Franca do Campo municipality was carried out during the summer of 2017. This followed a similar approach to the studies 205 

carried out by Pomonis et al. (1999) in Furnas parish and Gomes et al. (2006) in the parishes located on the flanks of Sete 

Cidades volcano (São Miguel Island), and by Cabral (2015) in Santa Catarina municipality (Fogo Island, Cape Verde).  

The inventory included accommodation (hotels, guest houses, rural tourism, local accommodations), restaurants (ice cream 

shops, pastry shops, cafes, pubs), tourism animation/activities (travel agencies, rent-a-cars, nautical and terrestrial activities, 

souvenirs shops) and culture (churches and places of cult, museums, libraries, theatres, marketplaces, cultural centres). 210 

Although this study does not intend to assess building damage but rather its loss of functionality, the inventory was based on 

a classification method developed by the Centre for Volcanology and Geological Hazards Assessment (CVARG) of the 

University of the Azores, now Research Institute for Volcanology and Risk Assessment (IVAR), to study building 

vulnerability to different geological hazards in the Azores. This method classifies buildings according to use, number of 

floors, type of materials used in the construction, roof inclination, type of windows, etc. Details on the classification method 215 

can be found in Gaspar et al. (2004) and Gomes et al. (2006). The exposed elements (i.e. buildings and infrastructure 

associated with tourism in Vila Franca do Campo) were mapped in detail in a GIS. 

The inventoried elements were then combined with the maps resulting from the different numerical simulations of tephra 

fallout and PDCs. This allowed us to identify which buildings and infrastructure would be affected by a certain thickness of 

tephra, as well as those located within the maximum potential extent of PDCs. 220 

3.4 Economic value of tourism 

The methodology used to assess the impact of future explosive eruptions of Fogo volcano on the tourism economy consists 

in evaluating the benefits generated by the accommodation units of Vila Franca do Campo municipality. With that aim, we 
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determined the current loss of revenue over a period of 30 years for different eruptive scenarios and discount rates, and 

considered the evolution of the occupancy rate of the accommodation capacity. This study follows the approach proposed by 225 

Vianna et al. (2012) that quantifies the value of a tourism industry based on shark diving in the Republic of Palau (Pacific 

Ocean), one of the main activities that contributes to the country’s economy. 

In the present case and following the building inventory, we calculated the annual income of 46 accommodation units by 

estimating the average price per night of each unit. To calculate this value, we considered the price of one night in March 

2018 (low season) and the cost of one night in August 2018 (high season). Some of the costs were obtained directly, 230 

provided by a representative of the accommodation unit, while others were obtained indirectly through online booking and 

shopping platforms, as well as through own websites. In specific cases, when was not possible to obtain this information, an 

average cost was calculated considering the type of accommodation.  

The annual revenue was obtained by multiplying the average cost per night by 365 days for the cases where the rent 

corresponds to the entire accommodation building. For the cases where the rent corresponds to only one room (e.g. hotels, 235 

apartments or chalets), the average cost of one room was multiplied by 365 days and by the number of rooms of the 

accommodation unit. The total annual revenue of the tourism sector in Vila Franca do Campo at 2018 values was obtained 

by adding up the annual revenues of each of the 46 accommodation units. However, this total revenue presupposes an 

occupancy rate of 100% of the existing capacity. To consider a more realistic situation, the total annual revenue was 

multiplied by a factor of 0.5 and 0.65 to assume an occupancy rate of 50 % and 65 %, respectively. This originates two 240 

alternative scenarios for the existing accommodation capacity (explained later on). 

To calculate the economic loss in Vila Franca do Campo municipality due to future explosive eruptions, we considered three 

economic scenarios resulting from the numerical simulations: 1) Destruction of accommodation buildings affected by ≥ 20 

cm of tephra from a VEI 4 sub-Plinian eruption during the summer period; 2) Destruction of accommodation buildings 

located within the maximum potential extent of PDCs generated by a VEI 4 sub-Plinian eruption; and 3) Destruction of 245 

accommodation buildings located within the maximum potential extent of PDCs generated by a VEI 5 Plinian eruption. 

Economic scenarios 1 and 2 (tephra fallout and PDCs, respectively) from a VEI 4 sub-Plinian eruption are more conservative 

and realistic in case of a future explosive eruption of Fogo volcano. Regarding tephra fallout, the summer period was chosen 

as it is the high season of touristic activity, but also because it corresponds to the wind conditions that would affect a larger 

portion of the study area. Economic scenario 3 (PDCs from a VEI 5 Plinian eruption) is not the most likely but represents the 250 

worst case possible, assuming near total destruction of the study area. The annual revenue of the accommodation units was 

calculated for the three scenarios. 

The next step was to calculate the Loss Present Value (LPV) for each of the economic scenarios. The LPV corresponds to 

the value lost (in Euros) after a certain period of time, discounted to the initial period (2018), which corresponds to year zero 

t0, following the expression: 255 

𝐿𝑃𝑉 =∑
𝑅t

(1+𝑟)𝑡

𝑡i

𝑡0

           (1) 
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Where 𝑡 is the year (0 to i), 𝑅t is the revenue of the accommodation units in year 𝑡, taking into account the occupancy rate, 

and 𝑟 is the discount rate. 

The occupancy rate (𝑟𝑜) is the percentage of occupied units or rooms in a certain area during a specific period. The discount 

rate (𝑟) is an intertemporal preference rate that allows to convert future values into present values, since a given monetary 260 

amount does not have the same value in the future. A discount rate equal to zero is used when it is intended to give the same 

weight to future and present values in a long-term analysis. This rate is considered a critical element in cost-benefit analysis 

when costs and benefits differ over time. In Portugal, this rate has varied between 0 and 6 % over the years. According to the 

Official Journal of the European Union (2006), in 2006 the discount rate in Portugal varied between 3.70 and 4.62 % 

(January to December, respectively). 265 

In this study, we considered a period of 30 years for the analysis, following the example of the eruption of Soufrière Hills 

volcano (Montserrat, Lesser Antilles) that started in 1995. This eruption also occurred on an island and produced tephra 

fallout, PDCs and lahars, with devastating consequences that last until today, even after more than two decades. Currently 

Montserrat’s tourism industry is still in a recovery phase (Pacheco and Lewis-Cameron, 2010). The LPV was calculated for 

each economic scenario, considering two occupancy rates of the existing accommodation capacity: one more conservative, 270 

with an occupancy rate of 50 % and discount rates of 2 and 4 %; and another less conservative, considering that the Azores 

tourism shows a growing tendency, with an occupancy rate of 65 % and the same discount rates (2 and 4 %). 

4 Numerical simulations results 

4.1 Tephra fallout from VEI 4 sub-Plinian eruption 

The VEI 4 sub-Plinian simulation for the summer period (Fig. 3a) shows that Vila Franca do Campo, located southeast of 275 

Fogo caldera, is the most affected municipality of São Miguel, with > 3 m of tephra fall deposited in the caldera and 

immediately to east-southeast of the vent. Almost all the municipality is affected by tephra deposition up to 2 m thick. The 

predominant winds from west-northwest also lead to the deposition of tephra on the western half of Povoação municipality 

(between 50 cm and 1 mm, from west to east) and on the southern part of Ribeira Grande municipality (up to 3 m close to 

the caldera). 280 

For the winter period (Fig. 3b), the prevailing winds from the west and the higher wind intensities promote the deposition of 

tephra on the eastern part of the island. Although Vila Franca do Campo is located on the southeast flank of the volcano, the 

strong westerly winds cause most of the tephra to be deposited on the northern sector of the municipality, with > 3 m 

immediately to the east of the caldera. However, in this scenario the entire Povoação municipality is affected by tephra fall 

that can reach maximum thicknesses of 1 to 2 m in much of its area. Ribeira Grande and Nordeste municipalities are also 285 

affected on their southern sectors, although with smaller thicknesses (1 m to 1 mm, from south to north). 
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4.2 Tephra fallout from VEI 5 Plinian eruption 

The VEI 5 Plinian simulations show the same dispersal patterns of the VEI 4 sub-Plinian simulations described above, but 

with greater extents. For the summer period (Fig. 4a), Vila Franca do Campo municipality is the most affected, with > 3 m of 

tephra deposited on its northern part, east-southeast of the caldera. Much of the municipality is affected by tephra deposition 290 

between 1 and 3 m thick. The neighbouring Povoação municipality is affected by tephra fall up to 1 m thick, particularly on 

the western side. The southern part of Ribeira Grande municipality is also affected by thicknesses of > 3 m of tephra close to 

the caldera. 

For the winter period (Fig. 4b), the predominant stronger winds blowing from west lead to the deposition of tephra on the 

eastern part of São Miguel. Vila Franca do Campo is affected by thick tephra deposition (> 3 m) on the northern sector of the 295 

municipality. Given the higher intensities of the wind, tephra thicknesses of 1 to 3 m are deposited on much of Povoação 

municipality, reaching > 3 m on the western part. Ribeira Grande and Nordeste municipalities are also affected on their 

southern sectors, with thicknesses of 2 m to 1 mm, from south to north. 

4.3 Pyroclastic Density Currents 

The simulations of PDCs for the VEI 4 sub-Plinian and VEI 5 Plinian eruptions (Fig. 5) show the maximum potential extent 300 

of these volcanic products generated from within Fogo caldera. In both cases, PDCs are not contained inside the caldera and 

flow down the flanks of the volcano. The entire central part of São Miguel may be affected by PDCs, which reach the sea on 

the north and south coasts. As expected, the VEI 4 and VEI 5 simulations differ in the maximum potential extent that the 

PDCs can achieve. The VEI 4 simulation (blue dotted line in Fig. 5) shows that the western half of Vila Franca do Campo, 

most of Lagoa and the central part of Ribeira Grande municipalities are affected by PDCs, which can reach maximum 305 

distances of 9 km from the caldera. In the case of the VEI 5 simulation (red dashed line in Fig. 5), more than two-thirds of 

Vila Franca do Campo, all of Lagoa and the central part of Ribeira Grande municipalities are affected by PDCs that can 

reach maximum distances of 11 km from the source. 

5 Exposed elements at risk 

The inventory and characterization of buildings related to tourism in Vila Franca do Campo municipality (140 in total) 310 

revealed that 46 correspond to accommodation units (33 %), 51 to restaurants (36 %), 29 are destined to culture or cultural 

activities (21 %) and 14 buildings are related to tourism animation/activities (10 %) (Fig. 6). Infrastructure such as the 

marina, the fishing port and the water park were also considered. 

The identification of the elements at risk was attained by overlapping the mapped exposed elements (buildings and 

infrastructure) with the results of the simulations (Figs. 7 to 9). Regarding tephra fallout scenarios, it is important to 315 

distinguish the type of destruction that the buildings can suffer depending on the tephra thicknesses. When a building 

(represented by a polygon) was overlapped by more than one thickness class we considered the most conservative option, by 
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choosing the class with the higher thickness. The impact on the buildings was assessed according to the expected type of 

destruction following critical thickness thresholds. 

Buildings affected by 1 mm to 20 cm of tephra and subject to constant and careful cleaning of the roof are usually not 320 

damaged or may suffer only minor damage. For the summer period (Figs. 7a and 8a), 62.1 % and 61.4% (VEI 4 sub-Plinian 

and VEI 5 Plinian scenarios, respectively) of all buildings related to tourism are likely to suffer thicknesses of up to 20 cm. 

On the other hand, for the winter period (Figs. 7b and 8b) buildings in Vila Franca do Campo municipality will only be 

covered by a maximum of 5 cm of tephra. The affected buildings are located in Ponta Garça, the easternmost parish, and 

correspond to 5 % and 15 % (VEI 4 sub-Plinian and VEI 5 Plinian scenarios, respectively) of all touristic buildings (see 325 

Table 2). 

Buildings covered by ≥ 20 cm of tephra can suffer significant damage, such as roof collapse (Pomonis et al., 1999). For both 

summer scenarios (Figs. 7a and 8a), approximately 31 % of the buildings are in these conditions. In more extreme cases, 

buildings affected by ≥ 1 m of tephra are likely to suffer total collapse (Blong, 1984; Spence et al., 2005). For this case, the 

percentage of affected buildings is higher in the VEI 5 Plinian scenario with 19 %, whereas in the VEI 4 sub-Plinian scenario 330 

is 9.3 % (Table 2). 

On what concerns PDCs, it should be noted that the distinction between dense and dilute currents was not taken into account 

in this analyses and therefore only total destruction was considered. The percentage of tourism-related buildings located 

within the maximum potential extent of PDCs (Fig. 9) from a VEI 4 sub-Plinian eruption is 87.1 %, whereas from a VEI 5 

Plinian eruption is 95 %. 335 

In addition to buildings, infrastructure related to the tourism sector in Vila Franca do Campo municipality will suffer similar 

damage to the buildings when affected by tephra fallout (summer period) and PDCs. Like the other exposed elements, 

infrastructure will not be affected by tephra fallout in the winter period. 

6 Assessment of the economic impact on tourism 

The economic impact of future explosive eruptions of Fogo volcano on the tourism sector of Vila Franca do Campo 340 

municipality was calculated considering three economic scenarios. The number of accommodation buildings affected in each 

economic scenario is shown in Table 3.  

The sum of the annual revenue of each accommodation unit resulted in an estimated total annual revenue of approximately 

9.5 million euros, assuming that the accommodation capacity was fully occupied. Combining the revenue data with the 

chosen occupancy and discount rates allowed to estimate the loss present values for a period of 30 years for each of the 345 

economic scenarios (Fig. 10). Table 4 summarizes the occupancy rates (𝑟𝑜), discount rates (𝑟) and LPV for the three 

economic scenarios considered. 

The graphs of figure 10 show that in all scenarios the loss present value is greater for higher occupancy rates and lower 

discount rates. For example, in economic scenario 3 (PDCs from a VEI 5 Plinian eruption) the loss present value after 30 
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years is almost 145 million euros, when the applied occupancy rate is 65 % and discount rate is 2 %. On the other hand, if an 350 

occupancy rate of 65 % and a discount rate of 4 % are considered, the loss is approximately 113 million euros. The lowest 

value of the updated loss is 87 million euros for an occupancy rate of 50 % and a discount rate of 4 %. 

In terms of LPV per year, there is a decreasing trend over time in all scenarios. For economic scenario 3 and considering 

both discount rates, the loss value in year zero does not reach 5 million euros, for occupancy rates of 50 %, and does not 

exceed 6 million euros, for a higher occupancy rate of 65 % (Fig. 10c). However, over the years the loss value downward 355 

trend is more evident when a discount rate is applied. For an occupancy rate of 65 %, the loss value in year 30 is 1.9 and 3.4 

million euros for discount rates of 4 % and 2 %, respectively, while for an occupancy rate of 50 %, this value is 

approximately 1.4 and 2.6 million euros, considering discount rates of 4 % and 2 %, respectively. 

7 Discussion 

7.1 Impact of tephra fallout and PDCs from Fogo volcano 360 

Fogo volcano is considered one of the most hazardous volcanoes in the Azores archipelago. Despite the low eruptive 

frequency of sub-Plinian and Plinian eruptions, with a recurrence interval of 833 years (Gaspar et al., 2015a), Fogo volcano 

produced the largest eruption in the Azores in the last 5000 years (Fogo A) and one of the most recent explosive eruptions of 

the archipelago (Fogo 1563) (Walker and Croasdale, 1971; Booth et al., 1978; Wallenstein, 1999). Even in non-eruptive 

periods, Fogo volcano is a hazardous landform with significant seismicity (Silva et al., 2015; 2020) and geothermal activity, 365 

manifested in fumarolic fields, CO2-cold and thermal springs, and diffuse degassing areas (Viveiros et al., 2015). Several 

unrest episodes have occurred in the last 20 years, with intense earthquake swarms lasting for several months and 

accompanied by ground deformation (inflation episodes), such as in May-September 2005 (Wallenstein et al., 2007; Silva et 

al., 2012). Due to its location, in the central part of São Miguel, a future explosive eruption will severely impact the parishes 

located on the flanks of the volcano, but also others in more distal areas depending on the wind conditions. Such an eruption 370 

will have significant long-term economic consequences for the island and even for the entire Azores archipelago. Next, we 

discuss the impact of tephra fallout and PDCs on São Miguel, following the eruptive scenarios defined in this study. 

The simulation of tephra fallout from a VEI 4 sub-Plinian eruption (most probable scenario) during the summer period, 

shows that the prevailing winds blowing from west-northwest promote the deposition of tephra within the caldera and to the 

east-southeast of the vent, making Vila Franca do Campo municipality the most affected, with tephra deposition up to 2 m 375 

thick. For an eruption occurring during the winter period, the predominant wind blowing from the west and the higher wind 

intensities, lead to the deposition of tephra on the eastern part of the island. Validation of the simulation results can be made 

by comparison with the geological record, namely with the deposit of the Fogo 1563 eruption, which has a well-defined 

dispersal axis towards the east (Walker and Croasdale, 1971; Aguiar, 2018). Regarding tephra fallout from a VEI 5 Plinian 

eruption (worst-case scenario), the simulation results show the same dispersion patterns as the VEI 4 sub-Plinian eruption 380 

https://doi.org/10.5194/nhess-2020-239
Preprint. Discussion started: 4 August 2020
c© Author(s) 2020. CC BY 4.0 License.



13 
 

scenario, for summer and winter conditions, though with thicker tephra deposition, due to the larger volume of ejected 

material. 

The impact of tephra fallout on buildings and infrastructure will depend on the thickness of accumulated tephra, which is 

translated as static load. In localities affected by tephra fallout, the accumulation of 20 cm or more of tephra would be 

sufficient to cause significant damage (Pomonis et al., 1999) and where the 1 m threshold is exceeded buildings would likely 385 

suffer total collapse, including constructions reinforced with concrete (Blong, 1984; Spence et al., 2005). However, if tephra 

is wet these critical thickness thresholds are substantially reduced (Spence et al., 2005). This possibility should not be 

overlooked given the rainy Azorean climate (Hernández et al., 2016). 

Other elements such as the ground transportation network would also be affected by tephra fallout. Roads are particularly 

vulnerable as the accumulation of only a few millimeters of tephra decreases drivability, due to traction loss and limited 390 

visibility. In areas where the accumulation of tephra fall deposits would be substantial, roads can become impassable until 

they are cleared. Vehicles are also vulnerable to tephra fallout, as ash enters the engines, causes filters and brake systems to 

clog, and corrode paintwork and exterior fittings (Wilson et al., 2012; Wilson et al., 2014). Marine transportation can also be 

affected by tephra fallout as ports and marinas become inoperable and vessels can sink. In addition, the deposition of tephra 

into the ocean can form pumice rafts that may stay afloat for weeks to months creating a hazard to navigation (Wilson et al., 395 

2012; Jutzeler et al., 2014). Particularly during the summer period, marine operations along the south coast of São Miguel 

would be severely affected and important fishing ports such as Vila Franca do Campo and Ribeira Quente would be brought 

to a halt. 

The simulations of PDCs, for VEI 4 sub-Plinian and VEI 5 Plinian eruptions, show that these currents are not contained 

inside the caldera but are able to overcome the caldera walls and flow down the flanks of the volcano. The eruption of such 400 

volcanic products would affect the entire central part of São Miguel, reaching the sea on the north and south coasts of the 

island. The maximum potential extent of the PDCs is in the order of 9 and 11 km from the caldera for VEI 4 and VEI 5 

scenario, respectively. It should be noted that in case of a real event, the progression of PDCs is strongly controlled by 

topography and channelled through valleys and depressions along the flanks of the volcano. Validation of these simulations 

can be done by comparison with the geological record of PDC deposits. Fogo A ignimbrites were emplaced quasi radially 405 

outward from the caldera, within narrow paleo-valleys on the southern flank and along Ribeira Grande graben on the 

northern flank, reaching the sea in both cases (Pensa et al., 2015a,b). 

The impact of PDCs on buildings and infrastructure is mostly related to their dynamic pressure and high temperature. In this 

case we assumed a binary impact approach which considered the absence of damage or total destruction of buildings and 

infrastructure by PDCs. Ground and marine transportation networks are also highly vulnerable to PDCs as roads, ports and 410 

marinas would become buried or suffer irreparable heat damage. Vehicles and vessels would also suffer permanent physical 

damage if impacted by PDCs (c.f. Wilson et al., 2014). 
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7.2 Impact of explosive eruptions on the economy of tourism of Vila Franca do Campo 

The main economic activities in the Azores are public services, retail and wholesale trade, fishing, livestock ranching, and 

production of dairy products (Vieira et al., 2019). Tourism is a growing and promising activity for job creation and for the 415 

development of this archipelago, where the landscape and marine-related activities constitute the main attractions (Calado et 

al., 2011; Torres et al., 2017; Vieira and Antunes, 2017). The number of visitors sharply expanded after the liberalization of 

airspace in two corridors between the mainland and the Azores since 2015, which allowed the entrance of low-cost airlines 

(Vieira et al., 2019). According to satellite tourism accounts, tourism accounted for 6.7 % of the gross value added (GVA) 

and 10 % of the employment in 2015. At the same time, the consumption of goods and services by tourists amounted to 14.1 420 

% of the GDP (Azorean Statistical Office, 2018). 

The location of Vila Franca do Campo municipality in the southern part of São Miguel Island, approximately 20 km east of 

Ponta Delgada city (the island’s capital), together with its moderate climate and numerous bathing areas along the coast 

attract many tourists throughout the year. Therefore, tourism is a major source of revenue for this municipality. In 2018, the 

estimated total annual revenue of the accommodation units on Vila Franca do Campo was approximately 9.5 million euros 425 

(assuming that the accommodation capacity would be fully occupied). This figure clearly shows the importance of this sector 

on the economy of the municipality and of the entire island of São Miguel. 

Looking at the calculated LPV for a period of 30 years for each of economic scenario, we can conclude that this value is 

greater when the occupancy rate is higher and the discount rate is lower. Economic scenario 1 (tephra fallout from a VEI 4 

sub-Plinian eruption during the summer period) has the smallest LPVs for the different rates used. The other two economic 430 

scenarios (PDCs from a VEI 4 sub-Plinian eruption and PDCs from a VEI 5 Plinian eruption) have similar LPVs because 

they comprise 96 % and 98 % of the accommodation buildings, respectively (Table 3). Still, and as expected, economic 

scenario 3 represents the higher loss, almost 145 million euros (Table 4). As seen in the graphs of figure 10, the LPV shows 

a decreasing trend over the years, as result of the applied methodology. 

The method used in this study is a first attempt to quantify the economic loss of the tourism sector resulting from future 435 

explosive eruptions of Fogo volcano. It should be noted that both the annual revenue and the LPV obtained for the tourism 

economy were estimated using only the values from the accommodation units of Vila Franca do Campo municipality. To 

achieve a more realistic estimation of the total revenue related to the tourism economy, the benefits of other sectors, such as 

restaurants or tourism animation/activities, should also be considered. The tourism industry also contributes to the economy 

by generating jobs in hotels, guest houses, local accommodations, restaurants, souvenir shops, etc. and therefore the workers’ 440 

salaries should also be quantified. Nevertheless, the present methodology may be adopted to calculate the loss of revenue of 

other sectors related to tourism and also applied to different volcanic regions vulnerable to explosive volcanism. 
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8 Conclusions 

In this study we present a new approach to quantify the impact of explosive volcanic eruptions on the tourism industry. The 

methodology consists in determining the economic loss related to future explosive eruptions, in this case of Fogo volcano 445 

(São Miguel Island), by estimating the benefits generated by tourism, in particular, by the accommodation units of Vila 

Franca do Campo municipality. However, such approach may also be adopted to other active volcanic regions and economic 

sectors.  

In the present case, we considered two eruptive scenarios for Fogo volcano, the most probable scenario (a VEI 4 sub-Plinian 

eruption) and the worst-case scenario (a VEI 5 Plinian eruption), both producing tephra fallout and PDCs. Furthermore, we 450 

evaluated the vulnerability of tourism-related buildings and infrastructure in Vila Franca do Campo to tephra fallout and 

PDCs by analysing their loss of functionality. The LPV method was used to estimate the benefits generated by 

accommodation units over a period of 30 years for different economic scenarios.  

The simulation of tephra fallout from a VEI 4 sub-Plinian eruption during the summer period shows that tephra deposition 

occurs to the east-southeast of Fogo caldera, while during the winter period the deposition is to the east of the vent, making 455 

Vila Franca do Campo municipality the most affected. The same occurs for the simulation of a VEI 5 Plinian eruption, where 

the dispersion patterns are similar to the VEI 4 sub-Plinian eruption scenario, although with a larger dispersion area and 

thicker tephra deposition due to the larger erupted volume. The simulations of PDCs show that the central part of São Miguel 

is the most affected, as currents flow down the flanks of the volcano, reaching maximum potential extent of 9 and 11 km 

from the caldera for VEI 4 sub-Plinian and VEI 5 Plinian eruptions, respectively. 460 

The assessment of the economic impact on the tourism sector, taking into account 2018 indicators, shows that economic 

scenario 1 (tephra fallout from a VEI 4 sub-Plinian eruption) has the lowest LPV when compared to economic scenarios 2 

and 3 (PDCs from a VEI 4 sub-Plinian eruption and from a VEI 5 Plinian eruption, respectively), which have similar LPVs. 

Although economic scenario 3 is not the most likely scenario, as it represents near total destruction of Vila Franca do Campo 

municipality, it represents the higher economic loss, with approximately 145 million euros over 30 years. 465 

Tourism is a growing industry worldwide and particularly in the Azores it has had an increasing importance in the regional 

economy since 2015. However, the Azores and other active volcanic regions are vulnerable to future eruptions, which in 

some cases may have long-term economic consequences. Volcanic hazard and risk assessment studies are therefore essential 

in areas where people live side by side with active volcanoes. The information obtained allows the competent authorities to 

implement appropriate strategies to try to mitigate volcanic risk, such as land use planning, emergency management and 470 

post-disaster economic recovery planning.  
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Eruptive source parameters References 

VEI 4 sub-Plinian Erupted volume (km3) 1 Booth et al. (1978) 

 Column height (m) 18 500 Carey and Sparks (1986) 

VEI 5 Plinian Erupted volume (km3) 3.2 Booth et al. (1978) 

 Column height (m) 27 000 Bursik et al. (1992) 

Grain size Mean diameter (MdΦ) 0 Cole et al. (1995)   

 Standard deviation (σΦ) 2 Cole et al. (1995)   

 Minimum (Φ) 4 Walker and Croasdale (1971) 

 Maximum (Φ) -4 Walker and Croasdale (1971) 

Clast density (kg/m3) Large (Φ < 1) 800 Wilson and Huang (1979) 

 Medium (1≤ Φ ≤3) 1200 Wilson and Huang (1979) 
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 Small (Φ > 3) 2300 Wilson and Huang (1979) 

Wind conditions  

VEI 4 sub-Plinian       

Summer period Altitude (m) 1500 6125 10 750 15 375 20 000 

 Direction (◦) 270 315 315 270 90 

 Intensity (m/s) 8 17 20 8 6 

Winter period Altitude (m) 1500 6125 10 750 15 375 20 000 

 Direction (◦) 270 270 270 270 270 

 Intensity (m/s) 17 20 20 17 11 

VEI 5 Plinian       

Summer period Altitude (m) 1500 8125 14 750 21 375 28 000 

 Direction (◦) 270 315 270 90 90 

 Intensity (m/s) 8 17 18 8 11 

Winter period Altitude (m) 1500 8125 14 750 21 375 28 000 

 Direction (◦) 270 270 270 270 270 

 Intensity (m/s) 17 20 20 10 17 

 

Table 1 - Input parameters used for the simulations of VEI 4 sub-Plinian and VEI 5 Plinian eruptions. 660 

 

Tephra thickness  
Summer period scenarios Winter period scenarios 

Unaffected 1 mm - 20 cm 20 cm - 1 m > 1 m Unaffected 1 mm - 5 cm 

VEI 4 sub-Plinian  7.1 % 62.1 % 21 % 9.3 % 95 % 5 % 

VEI 5 Plinian 7.9 % 61.4 % 12 % 19 % 85 % 15 % 

 

Table 2 - Percentage of buildings affected by tephra fallout from VEI 4 sub-Plinian and VEI 5 Plinian eruption scenarios in the 

summer and winter period. 

 665 

Economic scenario 
Number of accommodation 

buildings 

Percentage of accommodation 

buildings 
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1 (tephra fallout VEI 4 sub-

Plinian) 
17 36 % 

2 (PDCs VEI 4 sub-Plinian) 44 96 % 

3 (PDCs VEI 5 Plinian) 45 98 % 

 

Table 3 - Number and percentage of buildings in each economic scenario. 

 

Economic scenario Occupancy rate (ro) Discount rate (r) LPV (euros) 

1 (tephra fallout VEI 4 sub-Plinian) 

50 % 
2 % 13 765 834 

4 % 10 762 532 

65 % 
2 % 17 895 584 

4 % 13 991 291 

2 (PDCs VEI 4 sub-Plinian) 

50 % 
2 % 109 100 634 

4 % 85 298 067 

65 % 
2 % 141 830 825 

4 % 110 887 487  

3 (PDCs VEI 5 Plinian) 

50 % 
2 % 111 491 752 

4 % 87 167 513 

65 % 
2 % 144 939 278 

4 % 113 317 767 

 

Table 4 - Loss Present Value after 30 years for economic scenario 1 (tephra fallout VEI 4 sub-Plinian eruption), economic scenario 670 
2 (PDCs VEI 4 sub-Plinian eruption) and economic scenario 3 (PDCs VEI 5 Plinian eruption), considering a discount rate of 2 % 

and an occupancy rate of 50 %; discount rate of 4% and occupancy rate of 50 %; discount rate of 2 % and occupancy rate of 65 

% and discount rate of 4 % and occupancy rate of 65 %. 
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 675 

Figure 1 - (a) Location of the Azores archipelago in the North Atlantic Ocean and relation to the triple junction between the North 

American (NA), Eurasian (EU) and Nubian (NU) lithospheric plates (world bathymetry and topography from The GEBCO_08 

Grid; plate and country boundaries from ESRI). (b) Geodynamic setting of the Azores archipelago and main morphotectonic 

structures of the region. MAR - Mid-Atlantic Ridge; TR - Terceira Rift; EAFZ - East Azores Fracture Zone; GF - Gloria Fault 

(Azores bathymetry from EMODnet Bathymetry Consortium (2018); morphotectonic structures modified from Hipólito et al., 680 
2010). (c) Digital elevation model of São Miguel Island showing the volcanic systems and administrative limits of the six 

municipalities. 1 - Sete Cidades volcano; 2 - Picos fissure volcanic system; 3 - Fogo volcano; 4 - Congro fissure volcanic system; 5 - 

Furnas volcano; 6 - Povoação volcano; 7 - Nordeste volcanic system (after Gaspar et al., 2015). 
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Figure 2 - Location of Vila Franca do Campo municipality (the study area) on São Miguel Island showing the six parishes, 685 
buildings, infrastructure and main roads. 
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Figure 3 - (a) Tephra fallout deposition from a VEI 4 sub-Plinian eruption of Fogo volcano, considering the dominant winds for 

the summer period. (b) Tephra fallout deposition from a VEI 4 sub-Plinian eruption of Fogo volcano, considering the dominant 

winds for the winter period. 690 
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Figure 4 - (a) Tephra fallout deposition from a VEI 5 Plinian eruption of Fogo volcano, considering the dominant winds for the 

summer period. (b) Tephra fallout deposition from a VEI 5 Plinian eruption of Fogo volcano, considering the dominant winds for 

the winter period. 
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 695 

Figure 5 – Maximum potential extent of PDCs from a VEI 4 sub-Plinian eruption (blue dotted line; collapse height of 300 m) and 

from a VEI 5 Plinian eruption (red dashed line; collapse height of 500 m) of Fogo volcano.  
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Figure 6 - Percentage of buildings of each typology located in Vila Franca do Campo municipality.  
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 700 

Figure 7 – (a) Spatial distribution of the elements at risk in Vila Franca do Campo municipality affected by tephra fallout resulting 

from a VEI 4 sub-Plinian eruption at Fogo volcano, considering the dominant winds for the summer period. (b) Spatial 

distribution of the elements at risk in Vila Franca do Campo municipality affected by tephra fallout resulting from a VEI 4 sub-

Plinian eruption of Fogo volcano, considering the dominant winds for the winter period. 
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 705 

Figure 8 – (a) Spatial distribution of the elements at risk in Vila Franca do Campo municipality affected by tephra fallout resulting 

from a VEI 5 Plinian eruption of Fogo volcano, considering the dominant winds for the summer period. (b) Spatial distribution of 

the elements at risk in Vila Franca do Campo municipality affected by tephra fallout resulting from a VEI 5 Plinian eruption of 

Fogo volcano, considering the dominant winds for the winter period. 
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 710 

Figure 9 - Spatial distribution of the elements at risk in Vila Franca do Campo municipality affected by PDCs resulting from VEI 

4 sub-Plinian (blue dotted line) and VEI 5 Plinian (red dashed line) eruptions of Fogo volcano. 
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Figure 10 – (a) Loss Present Value after 30 years for economic scenario 1 (tephra fallout VEI 4 sub-Plinian eruption) considering a 

discount rate of 2 % and an occupancy rate of 50% (light blue line); discount rate of 4 % and occupancy rate of 50 % (red line); 715 
discount rate of 2 % and occupancy rate of 65 % (gray line); discount rate of 4 % and occupancy rate of 65 % (dark blue line). (b) 

Loss Present Value after 30 years for economic scenario 2 (PDCs VEI 4 sub-Plinian eruption) considering a discount rate of 2 % 

and an occupancy rate of 50 % (light blue line); discount rate of 4 % and occupancy rate of 50 % (red line); discount rate of 2 % 

and occupancy rate of 65 % (gray line); discount rate of 4 % and occupancy rate of 65 % (dark blue line). (c) Loss Present Value 
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after 30 years for economic scenario 3 (PDCs VEI 5 Plinian eruption) considering a discount rate 2 % and an occupancy rate of 720 
50% (light blue line); discount rate of 4 % and occupancy rate of 50 % (red line); discount rate of 2 % and occupancy rate of 65 % 

(gray line); discount rate of 4 % and occupancy rate of 65 % (dark blue line). 
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